ФЕРРОСИЛИЦИЙ

Методы определения кремния

Издание официальное

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 008 «Ферросплавы»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 15 апреля 1994 г. (отчет Технического секретариата № 2)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации Армгосстандарт		
Республика Армения			
Республика Беларусь	Госстандарт Республики Беларусь		
Республика Казахстан	Госстандарт Республики Казахстан		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Туркменистан	Главгосслужба «Туркменстандартлары»		
Украина	Госстандарт Украины		

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 26 июня 2001 г. № 247-ст межгосударственный стандарт ГОСТ 13230.1—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2002 г.

4 B3AMEH FOCT 13230.1-81

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ФЕРРОСИЛИЦИЙ

Методы определения кремния

Ferrosilicon, Methods for determination of silicon

Дата введения 2002-07-01

1 Область применения

Настоящий стандарт устанавливает гравиметрический, титриметрический и термометрический методы определения кремния в ферросилиции при массовой доле его от 8 % до 95 %.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 4108-72 Барий хлорид 2-водный. Технические условия

ГОСТ 4140-74 Стронций хлористый 6-водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4234—77 Калий хлористый. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5962-67* Спирт этиловый ректификованный. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 11293-89 Желатин. Технические условия

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20848-75 Калий фтористый 2-водный. Технические условия

ГОСТ 24363-80 Калия гидроокись. Технические условия

ГОСТ 24991—81 Феррохром, ферросиликохром, ферросилиций, ферросиликомарганец, ферромарганец. Методы отбора и подготовки проб для химического и физико-химического анализов

ГОСТ 28473—90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

3 Общие требования

- Общие требования к методам анализа по ГОСТ 28473.
- З.2 Лабораторная проба должна быть приготовлена в виде порошка максимальным размером частиц 0.16 мм по ГОСТ 24991.

4 Гравиметрический метод

4.1 Сущность метода

Метод основан на выделении кремния в виде кремниевой кислоты из сернокислого или хлорнокислого раствора, прокаливании кремниевой кислоты до диоксида кремния и удалении в виде тетрафторида кремния путем обработки осадка фтористоводородной кислотой.

На территории Российской Федерации действует ГОСТ Р 51652—2000.

4.2 Реактивы и растворы

Кислота соляная по ГОСТ 3118 и растворы 1:1 и 1:50.

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204, раствор 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Кислота хлорная плотностью 1,5 г/см3.

Спирт этиловый ректификованный по ГОСТ 5962 или по ГОСТ 18300.

Калия гидроокись по ГОСТ 24363.

Натрия гидроокись по ГОСТ 4328.

Натрия пероксид.

Аммиак водный по ГОСТ 3760.

Желатин по ГОСТ 11293, раствор 10 г/дм³, свежеприготовленный: 1 г желатина помещают в стакан вместимостью 250 см³, прибавляют 40—50 см³ воды и оставляют на 1 ч при комнатной температуре, периодически перемешивая. Затем желатин растворяют при слабом нагревании и перемешивании. Охлаждают, разбавляют водой до объема 100 см³ и вновь перемешивают.

Поливиниловый спирт, раствор 10 г/см3, свежеприготовленный.

4.3 Проведение анализа

4.3.1 Навеску пробы массой 0,5 г (при массовой доле кремния до 30 %) или 0,25 г (при массовой доле кремния свыше 30 % до 70 %), или 0,2 г (при массовой доле кремния свыше 70 %) помещают в стеклоуглеродный или железный, или никелевый тигель, содержащий 3 г гидроксида калия или натрия, засыпают навеску 2 г гидроксида калия или натрия и приливают 1 см³ этилового спирта (для хлорнокислотного метода используют только гидроксид натрия).

Тигель помещают на плиту, осторожно нагревают, затем выпаривают содержимое досуха. После охлаждения в тигель добавляют 2 г пероксида натрия и проводят сплавление при температуре 600—650 °C (для стеклоуглеродного тигля) или при температуре 700—750 °C (для железного или никелевого тигля) в течение 5—10 мин.

Тигель с плавом охлаждают, помещают в стакан из фторопласта вместимостью 400—500 см³, приливают 50—70 см³ воды и вышелачивают плав без нагревания.

После выщелачивания плава тигель извлекают, протирают его стеклянной палочкой с резиновым наконечником, обмывают небольшим количеством раствора соляной кислоты (1:1) и горячей водой. В стакан добавляют 30—50 см³ соляной кислоты и после растворения осадка гидроксидов раствор переносят в стеклянный стакан вместимостью 400—500 см³.

Далее анализ проводят по 4.3.2 или 4.3.3.

4.3.2 Сернокислотный способ выделения кремниевой кислоты

К раствору, полученному по 4.3.1, прибавляют 40 см³ раствора серной кислоты (1:1) и выпаривают содержимое стакана до объема 70—80 см³. К горячему раствору (60—70 °C) приливают 10 см³ раствора желатина или 2 см³ раствора поливинилового спирта и хорошо перемешивают. Затем приливают горячую воду до объема 250—300 см³, 10 см³ соляной кислоты, хорошо перемешивают, нагревают и через 10—15 мин осадок кремниевой кислоты отфильтровывают на фильтр средней плотности с добавлением небольшого количества беззольной фильтробумажной массы. Осадок на фильтре промывают 9—10 раз горячим раствором соляной кислоты (1:50) и затем 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат переносят в стакан, в котором проводилось выделение кремниевой кислоты, добавляют 10 см³ азотной кислоты и выпаривают раствор до выделения паров серной кислоты, которым дают выделяться 2—3 мин.

Содержимое стакана охлаждают, приливают 10 см³ соляной кислоты, 100—150 см³ горячей воды и нагревают до растворения солей. К горячему раствору (~70 °С) приливают 10 см³ раствора желатина или 2 см³ поливинилового спирта и хорошо перемешивают. Через 10 мин осадок кремниевой кислоты отфильтровывают на фильтр средней плотности с добавлением небольшого количества беззольной фильтробумажной массы и промывают 9—10 раз горячим раствором соляной кислоты (1:50), а затем 2—3 раза горячей водой.

Фильтры с осадками кремниевой кислоты объединяют, помещают в платиновый тигель, высущивают, осторожно озоляют и прокаливают в течение 40 мин при температуре 1000—1100 °C.

После охлаждения в тигель с осадком добавляют 6—8 капель раствора серной кислоты (1:1), выпаривают до удаления паров серной кислоты и прокаливают при температуре 1000—1100 °C в течение 20 мин.

Тигель с осадком охлаждают в эксикаторе, взвешивают, осадок смачивают несколькими кап-

лями воды, прибавляют 3—4 капли раствора серной кислоты (1:1), 5—6 см³ фтористоводородной кислоты и выпаривают до удаления паров серной кислоты. Затем тигель прокаливают при температуре 1000—1100 °C в течение 20 мин, охлаждают в эксикаторе и снова взвешивают.

4.3.3 Хлорнокислотный способ выделения кремниевой кислоты

К раствору, полученному по 4.3.1, прибавляют 100 см³ хлорной кислоты, нагревают содержимое стакана до выделения густых паров хлорной кислоты и продолжают нагревание до начала кристаллизации осадка.

После охлаждения осторожно приливают 20 см³ соляной кислоты, перемешивают, приливают 250 см³ горячей воды. Растворяют соли при нагревании, хорошо перемешивают и дают отстояться.

Осадок кремниевой кислоты отфильтровывают на фильтр средней плотности с добавлением небольшого количества беззольной фильтробумажной массы и промывают 10—12 раз горячим раствором соляной кислоты (1:50), затем 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат переносят в стакан, в котором проводилось выделение кремниевой кислоты, выпаривают до объема приблизительно 250 см³. Добавляют 20 см³ хлорной кислоты и продолжают выпаривание до выделения густых паров хлорной кислоты, которым дают выделяться до начала кристаллизации осадка. Затем выделяют кремниевую кислоту и промывают, как указано выше.

Фильтры с осадками кремниевой кислоты объединяют, помещают в платиновый тигель, смачивают фильтры четырьмя каплями аммиака. Высушивают, осторожно озоляют и прокаливают при температуре 1000—1100 °C в течение 40 мин. После охлаждения в тигель с осадком добавляют 6—8 капель раствора серной кислоты (1:1), выпаривают до удаления паров серной кислоты и прокаливают в течение 20 мин при температуре 1000—1100 °C. Тигель с осадком охлаждают в эксикаторе и взвешивают. Осадок смачивают несколькими каплями воды, прибавляют 3—4 капли раствора серной кислоты (1:1), 5—6 см³ фтористоводородной кислоты и выпаривают до удаления паров серной кислоты. Затем тигель прокаливают при температуре 1000—1100 °C в течение 20 мин, охлаждают в эксикаторе и снова взвешивают.

4.4 Обработка результатов

4.4.1 Массовую долю кремния Х, %, вычисляют по формуле

$$X = \frac{(m_1 - m_2) - (m_3 - m_4) \ 0.4674}{m} \ 100,$$
 (1)

где m₁ — масса тигля с осадком диоксида кремния до обработки фтористоводородной кислотой, г;

 $m_2^{}-$ масса тигля с остатком после обработки фтористоводородной кислотой, г;

 $\vec{m_{i}}$ — масса тигля є осадком контрольного опыта до обработки фтористоводородной кислотой, г;

той, г;
 масса тигля с остатком контрольного опыта после обработки фтористоводородной кислотой, г;

т — масса навески пробы, г.

0,4674 — коэффициент пересчета диоксида кремния на кремний;

4.4.2 Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в таблице 1.

Таблица 1 — Нормы точности и нормативы контроля точности

В процентах

Массовая доля кремния	Погрешность результатов анализа Д	Допускаемое расхождение			
		двух средних ретультатов анализа, выполненных в различных условиях, d_{κ}	двух параллельных определений d_2	трех парадлельных определений d_3	результатов анализа стандартного образца и аттестованного значения 8
От 8 до 10 включ. Св. 10 » 20 » » 20 » 50 » » 50 » 95 »	0,16 0,3 0,5 0,7	0,20 0,4 0,6 0,8	0,17 0,3 0,5 0,7	0,20 0,4 0,6 0,8	0,11 0,2 0,3 0,4

5 Титриметрический метод

5.1 Сущность метода

Метод основан на осаждении кремниевой кислоты в виде кремнефторида калия. Осадок кремнефторида калия подвергают гидролизу горячей водой в присутствии хлористого кальция. Выделенную при этом хлористоводородную кислоту в количестве, эквивалентном содержанию фтористоводородной кислоты, оттитровывают раствором шелочи в присутствии фенолфталеина или смешанного индикатора.

5.2 Реактивы и растворы

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461.

Калий хлористый по ГОСТ 4234, растворы 200 и 40 г/дм3.

Последний готовят на воде, прокипяченной в течение 1 ч и охлажденной.

Кальций хлористый по НД, раствор 400 г/дм³, нейтрализованный раствором гидроксида натрия по индикатору метиловому красному.

Барий хлористый по ГОСТ 4108, раствор 10 г/дм3.

Метиловый красный, индикатор и спиртовой раствор 1 г/дм³.

Метиловый голубой, индикатор.

Фенолфталеин, индикатор, спиртовой раствор 10 г/дм3.

Индикатор смешанный (индикатор Ташира): 0,125 г метилового красного и 0,083 г метиленового голубого растворяют в 100 см³ этилового спирта; применяют через сутки после приготовления.

Спирт этиловый ректификованный по ГОСТ 5962 или по ГОСТ 18300.

Натрия гидроокись по ГОСТ 4328, раствор 0,25 моль/дм³: 10 г гидроксида натрия растворяют в 1 дм³ воды в сосуде из полиэтилена, добавляют 2 см³ раствора хлористого бария и через 3 суг раствор отфильтровывают. Хранят в посуде из полиэтилена.

Массовую концентрацию раствора гидроксида натрия C, г/см³ кремния, устанавливают по стандартному образцу ферросилиция с химическим составом, соответствующим требованиям настоящего стандарта, и проведенному через все стадии анализа в соответствии с 4.3, и вычисляют по формуле

$$C = \frac{\hat{A} m_s}{(V - V_s) 100},$$
 (2)

где \hat{A} — аттестованное значение массовой доли кремния в стандартном образце, %;

т. — масса навески стандартного образца, г;

 V — объем раствора гидроксида натрия, израсходованный на титрование раствора стандартного образца, см³;

V₁ — объем раствора гидроксида натрия, израсходованный на титрование раствора контрольного опыта, см³.

Вода дистиллированная, прокипяченная в течение 1 ч.

5.3 Проведение анализа

Навеску пробы массой 0,2 г (при массовой доле кремния до 20 %) или 0,1 г (при массовой доле кремния свыше 20 %) помещают в пластмассовый стакан (фторопластовый, полиэтиленовый и др.), приливают 15 см³ воды, 10 см³ азотной кислоты и 10 см³ фтористоводородной кислоты, закрывают стакан пластмассовой крышкой и растворяют пробу без нагревания при перемешивании в течение 1—2 мин.

При анализе низкокремнистых сплавов наблюдается легкий осадок черного цвета,

Крышку снимают, удаляют оксиды азота выдуванием резиновой грушей, обмывают крышку и стенки стакана примерно 10 см³ воды, добавляют 40 см³ раствора хлористого калия 200 г/дм³, перемешивают и стакан с раствором охлаждают проточной водой до температуры 10—15 °C.

Выпавший осадок кремнефторида калия отфильтровывают на фильтр средней плотности с небольшим количеством фильтробумажной массы, помещенный в пластмассовую воронку. Стакан и осадок промывают охлажденным раствором хлористого калия 40 г/дм³ до нейтральной реакции по универсальной индикаторной бумаге. Промывание осадка считается достаточным, если от одной капли фильтрата универсальная бумага становится желтой. Затем фильтр с осадком переносят в коническую колбу вместимостью 500 см³, приливают 150—200 см³ кипящей прокипяченной воды и 10 см³ раствора хлористого кальция. Содержимое колбы тщательно перемешивают для растворения

осадка и разрушения фильтра, обмывают стенки колбы прокипяченной водой, нагревают раствор до кипения и титруют раствором гидроксида натрия в присутствии 7—10 капель раствора фенолфталенна до появления устойчивой розовой окраски раствора или в присутствии 10 капель смешанного индикатора до устойчивой зеленой окраски раствора. При применении смешанного индикатора колбу с оттитрованным раствором снова нагревают, если появляется мадиновая окраска, раствор дотитровывают раствором гидроксида натрия до устойчивой зеленой окраски.

5.4 Обработка результатов

5.4.1 Массовую долю кремния X_1 , %, вычисляют по формуле

$$X_1 = \frac{C(V_2 - V_1)}{m} \cdot 100,$$
(3)

где C — массовая концентрация раствора гидроксида натрия, выраженная в г/см³ кремния;

 V_2 — объем раствора гидроксида натрия, израсходованный на титрование раствора пробы, см³;

 V_1 — объем раствора гидроксида натрия, израсходованный на титрование раствора контрольного опыта, см³;

т - масса навески пробы, г.

5.4.2 Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в таблице 1.

6 Термометрический метод

6.1 Сущность метода

Метод основан на измерении изменения температуры раствора в результате химической реакции осаждения кремниевой кислоты в виде кремнефторида калия.

6.2 Аппаратура, реактивы и растворы

Термометрический анализатор типа «Дитерманал» со всеми принадлежностями.

Кислота соляная по ГОСТ 3118, раствор 2:1.

Кислота азотная по ГОСТ 4461, раствор 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Стронций хлористый 6-водный по ГОСТ 4140, раствор 300 г/дм³.

Калий хлористый по ГОСТ 4243, раствор 300 г/дм³.

Калий фтористый 2-волный по ГОСТ 20848, раствор 200 г/дм³.

Реагент-осадитель готовят следующим образом: смешивают 1,7 дм³ раствора хлористого калия с 300 см³ раствора фтористого калия.

6.3 Проведение анализа

Навеску пробы, отобранную в соответствии с таблицей 2, помещают в полиэтиленовый сосуд для растворения.

Таблица 2 — Масса навески пробы

Массовая доля кремния, %	Масса навески пробы, г		
От 8 до 20 включ.	1,0		
Св. 20 » 50 »	0,5		
* 50 * 60 *	0,25		
* 80 * 95 *	0,2		

Приливают 10 см³ раствора азотной кислоты, 10 см³ раствора соляной кислоты, обмывают стенки сосуда 20—30 см³ воды, добавляют 15 см³ фтористоводородной кислоты и немедленно закрывают колбу резиновой пробкой с полиэтиленовой газоотводной трубкой. Колбу нагревают в течение 1,5 ч на водяной бане. Охлаждают, обмывают газоотводную трубку и пробку водой, добавляют 5 см³ раствора хлористого стронция, переносят раствор в мерную полиэтиленовую колбу вместимостью 200 см³ и доливают до метки водой. Раствор переливают в пластмассовый стакан и устанавливают температуру (23,0±0,5) °C. Стакан помещают в измерительную ячейку прибора и осаждают кремнефторид калия 12 см³ раствора реагента-осадителя, регистрируя изменение температуры раствора согласно инструкции по эксплуатации термоанализатора. При работе в автомати-

ГОСТ 13230.1-93

ческом режиме время компенсации 4 мин; чувствительность 4 В, программа дифференциальная, время реакции 60 с.

Массовую долю кремния определяют методом сравнения со стандартным образцом ферросилиция с химическим составом, соответствующим требованиям настоящего стандарта, и проведенным через все стадии анализа.

6.4 Обработка результатов

6.4.1 Массовую долю кремния Х2, %, вычисляют по формуле

$$X_2 = \frac{\hat{A}}{W} \frac{W_1}{W}$$
, (4)

где \hat{A} — аттестованное значение массовой доли кремния в стандартном образце, %;

— показания цифрового вольтметра при анализе раствора стандартного образца;

 W_1 — показания цифрового вольтметра при анализе раствора пробы.

6.4.2 Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в таблице 1.

УДК 669.15'782-198:546.28.06:006.354

MKC 77.100

B19

OKCTY 0809

Ключевые слова: ферросилиций, анализ, кремний, результат

Редактор Л.И. Нахимова
Технический редактор В.И. Прусакова
Корректор В.И. Варенцова
Компьютерная верстка Е.И. Мартемыновой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 12.11.2001. Подписано в печать 29.11.2001. Усл. печ. л. 0,93. Уч.-изд. л. 0,75. Тираж 319 экз. С 2989. Зак. 1104.